Integrated Stepper Motor User Manual

© 2022 Leadshine Technology Co., Ltd.
Address: 15-20/F, Block B, Nanshan I Valley, No.3185, Shahe West Road, Nanshan District, Shenzhen, Guangdong, 518055, China

Tel: (86)755-26409254
Fax: (86)755-26402718
Web: www.leadshine.com
Sales: sales@leadshine.com
Support: tech@leadshine.com

Notice

Read this manual carefully before any assembling and using. Incorrect handling of products in this manual can result in injury and damage to persons and machinery. Strictly adhere to the technical information regarding installation requirements.

This manual is not for use or disclosure outside of Leadshine except under permission. All rights are reserved. No part of this manual shall be reproduced, stored in retrieval form, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise without approval from Leadshine. While every precaution has been taken in the preparation of the book, Leadshine assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained herein.

This document is proprietary information of Leadshine that is furnished for customer use ONLY. Information in this document is subject to change without notice and does not represent a commitment on the part of Leadshine. Therefore, information contained in this manual may be updated from time-to-time due to product improvements, etc., and may not conform in every respect to former issues.

- Thank you for purchasing Leadshine iEM Series Products

- Please read this manual carefully before operating
\bullet Please keep this manual appropriately

Record of Revisions

Manual Revision	Data	
V 1.0	$02 / 25 / 2022$	Description of Release
		Initial Release

Table of Content

1 Introduction1
1.1 Product Introduction 1
1.2 Features 1
1.3 Applications 1
2. Specifications1
2.1 Electrical Specifications 1
2.2 Environment. 1
2.3 Dimensions 2
3. Connections and LED Indication 3
3.1 Connector P1 - Power \& Control \& Digital Outputs Connector. 3
3.1.1 Pin Assignments of P 1 3
3.1.2 Connection of Control Signals 3
3.1.3 Connection of ALM Signal 4
3.1.4 Connection of Power Supply 5
3.2 Connector P2 - Tuning Port 5
3.3 LED Light Indication 5
4. DIP Switch Configurations. 5
4.1 Microstep Resolution (SW1-SW4) 6
4.2 Other DIP Switch Settings 7
5. Accessories 7
6. Warranty 8

1 Introduction

1.1 Product Introduction

iEM series is Leadshine stepper motor integrated a digital stepper drive. It implements advanced control algorithm of Leadshine based on its tens of years' experience in stepper and servo controls. At very compact size can save mounting space, eliminate motor wiring time, reduce interference, and cut/reduce cable and labor costs.

The iEM series are reliable and affordable and performs excellent in many industrial applications such as CNC, 3D printer, stage equipment, medical, electronics, packaging...

1.2 Features

- No tuning for easy setup
- Soft-start with no "jump" when powered on
- Low noise and vibration, smooth motion
- Step\&Direction and CW\&CCW control
- 3 digital inputs, 1 optically isolated digital output
- RS232 communication for Leadshine software connection
- Over voltage, over current protections

1.3 Applications

The iEM series can be adopted in many low to median speed applications such as 3 D printer, lab automation instruments, plotters, medical equipment, electronic equipment, small packaging machines, etc.

2. Specifications

2.1 Electrical Specifications

Model	Frame Size	$\begin{aligned} & \text { Length } \\ & (\mathrm{mm}) \end{aligned}$	Holding Torque (N.m)	$\begin{aligned} & \text { Weight } \\ & \text { (Kg) } \end{aligned}$	Command Source		Electrical Parameters		Control Signal				
					PUL\& DIR	CW\& CCW	Power Voltage (VDC)	Peak Current (A)	Logical Current	Logical Voltage	Max Input Frequency	MIN PUL Width	MIN DIR Setup
iEM-1703		64	0.3	0.5	\checkmark	x	20-36	0.3-3.0	7-16mA	5 V	200 KHz	$2.5 \mu \mathrm{~s}$	5.0 $\mu \mathrm{s}$
iEM-1706	$\begin{gathered} \text { NEMA } \\ 17 \end{gathered}$	72	0.6	0.9	\checkmark	x	20-36	0.3-3.0					
iEM-1708		85	0.8	1.1	\checkmark	x	20-36	0.3-3.0					
iEM-2313	$\begin{gathered} \text { NEMA } \\ 23 \end{gathered}$	75	1.3	1.0	\checkmark	\checkmark	20-50	0.5-4.5					
iEM-2323		96	2.3	1.3	\checkmark	\checkmark	20-50	0.5-7.0					
iEM-2321-L		89	2.1	1.4	\checkmark	\checkmark	20-50	0.5-7.0					
iEM-2331-L		109	3.1	1.6	\checkmark	\checkmark	20-50	0.5-7.0					
iEM-2430	$\begin{gathered} \text { NEMA } \\ 24 \end{gathered}$	109	3.0	1.6	\checkmark	\checkmark	20-50	0.5-7.0					
iEM-2435		122	3.5	1.9	\checkmark	\checkmark	20-50	0.5-7.0					

2.2 Environment

Cooling		Natural Cooling or Forced Cooling	
	Environment	Avoid dust, oil fog and corrosive gases	
Operating Environment	Humidity	$40 \% \mathrm{RH}-90 \% \mathrm{RH}$	
	Operating Temperature	$0^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}-104^{\circ} \mathrm{F}\right)$	
Storage Temperature	Vibration	$10-50 \mathrm{~Hz} / 0.15 \mathrm{~mm}$	

2.3 Dimensions

> (unit: mm [1inch=25.4mm])

.2

Models	L1 length	L length
iEM-1703	43	64
iEM-1706	51	72
iEM-1708	64	85

Models	L1 length	L length
iEM-2313	54	75
iEM-2323	75	96
iEM-2321-L	68	89
iEM-2331-L	88	109
iEM-2430	88	109
iEM-2435	101	122

Note: (1) Frame size is 60 mm , center diameter is 36 mm .
(2) Frame size is 60 mm , center diameter is 36 mm , shaft diameter is 10 mm
Figure 1: Mechanical specifications

3. Connections and LED Indication

Figure 2: iEM series motor connectors

3.1 Connector P1 - Power \& Control \& Digital Outputs Connector

3.1.1 Pin Assignments of P 1

The P1 connector in Figure 2 contains connections for control signals and 2 digital output.
See the following table for details.

PIN	I/O	Details
VCC	I	Power supply positive connection. 20-36VDC power supply voltage
GND	I	Power supply ground connection.
ALM-	0	Alarm: An OC output signal. It takes a sinking or sourcing at 5-24V@30mA
ALM +	O	
ENA-	I	Enable Signals: Optional, not connected by default. (1) Effective high level is $4.5-5 \mathrm{~V}$; Effective low level is $0-0.5 \mathrm{~V}$ connection (2) ENA signal requires advance DIR signal minimum 200 ms in single pulse mode
ENA+	I	
DIR-	I	Pulse and Direction Connection: (1) Optically isolated, high level $4.5-5 \mathrm{~V}$, low voltage $0-0.5 \mathrm{~V}$. (2) Max 200 KHz input frequency. (3) The width of PUL signal is at least $2.5 \mu \mathrm{~s}$, duty cycle is recommended 50%. (4) Single pulse (step \& direction), iEM-23xx and iEM-24xx support double pulse (CW\&CCW), while iEM-17xx do not support. (5) DIR signal requires advance PUL signal minimum $5 \mu \mathrm{~s}$.
DIR+	I	
PUL-	I	
PUL+	I	

Notes: (1) Shielding control signal wires is suggested; (2) To avoid/reduce interference, do not tie control signal cables and power wires together.

3.1.2 Connection of Control Signals

The iEM series motor can accept differential and single-ended control signal inputs (open-collector and PNP output). It has 3 optically isolated control inputs, PUL, DIR, and ENA. Refer to the following two figures for connections of PNP and NPN signals.

Figure 3: Control Signals Connection
Notes: (1) ENA signal is no connected as default;
(2) If the logic voltage is not 5 V , it needs to connect resistors.

3.1.3 Connection of ALM Signal

Alarm output is the default configuration. This output signals a fault condition including over-voltage, over-current, or position following error. This output can be used to drive devices such as a relay, a LED, etc., or as an input signal to electronic devices like a PLC.
For example, in a multi-axis system like a CNC machine when one of the axes fails such a fault output signal can be feedback to the motion controller for a followed action (e.g., auto machine shutdown, auto error clearing, etc.).

Figure 4: ALM Signals Connection

3.1.4 Connection of Power Supply

Pin Name	Details
	Power supply positive connection.
+VDC	iEM-17xx:20-36VDC
	iEM-23xx and iEM-24xx: 20-50 VDC
GND	Power supply ground connection.

Notes: It is recommended that power voltage of all integrated motors are 24 VDC , otherwise if the motor is too hot, it is easy to transfer heat to the drive, thus damaging the drive.

3.2 Connector P2 - Tuning Port

The P2 connector in Figure 2 is a RS232 communication port for Leadshine software connection. It is just used to modify parameter, not for equipment control because neither precision nor stability is sufficient. If you need a Modbus-RS485 control, use a Leadshine iEM-RS series integrated stepper motor.The interface definition is as follows:

Female DB9
(Look from the front side)
Figure5: RS232 Tuning Port

3.3 LED Light Indication

There are two LED lights for iEM motor, one is red and another is green. The GREEN one is the power indicator which will be always on generally. The RED one is a protection indicator. It is off always when a iEM motor operates normally, but will flash 1 , 2 or 7 times in a 5 -second period when error protection is enabled. Different number of flashes indicates different protection type.

1		Over-current	Turn off the power immediately. a) Check wiring is short-circuited or not; b) Check motor is short-circuited or not.
2		Over-voltage	Turn off the power immediately. a) Check if the power voltage is higher than 90VDC
Always	-	PCB board is burned out	Contact after-sale a) Power supply connection is wrong

When above protections are active, the motor shaft will be free and the red LED blinks. Reset the drive by repowering it to make it function properly after removing above problems.

4. DIP Switch Configurations

The iEM series has a row of DIP switches, of which the iEM17xx and iEM-23xx DIP switches are a bit different, as follows,

4.1 Microstep Resolution (SW1-SW4)

- For iEM-17xx Series

Microstep resolution is set by SW1, 2, 3, 4 of the DIP switches as shown in the following table:

Steps/Revolution	SW1	SW2	SW3	SW4
200 (Default)	on	on	on	on
400	off	on	on	on
800	on	off	on	on
1600	off	off	on	on
3200	on	on	off	on
6400	off	on	off	on
12800	on	off	off	on
25600	off	off	off	on
1000	on	on	on	off
2000	off	on	on	off
4000	on	off	on	off
5000	off	off	on	off
8000	on	on	off	off
10000	off	on	off	off
20000	on	off	off	off
25000	off	off	off	off

- For iEM-23xx and iEM-24xx Series

Steps/Revolution	SW1	SW2	SW3	SW4
$\mathbf{4 0 0}$ (Default)	on	on	on	on
$\mathbf{8 0 0}$	off	on	on	on
$\mathbf{1 6 0 0}$	on	off	on	on
$\mathbf{3 2 0 0}$	off	off	on	on
$\mathbf{6 4 0 0}$	on	on	off	on
$\mathbf{1 2 8 0 0}$	off	on	off	on
$\mathbf{2 5 6 0 0}$	on	off	off	on
$\mathbf{5 1 2 0 0}$	off	off	off	on
$\mathbf{1 0 0 0}$	on	on	on	off
$\mathbf{2 0 0 0}$	off	on	on	off
$\mathbf{4 0 0 0}$	on	off	on	off

Leadshine

$\mathbf{5 0 0 0}$	off	off	on	off
$\mathbf{8 0 0 0}$	on	on	off	off
$\mathbf{1 0 0 0 0}$	off	on	off	off
$\mathbf{2 0 0 0 0}$	on	off	off	off
$\mathbf{4 0 0 0 0}$	off	off	off	off

4.2 Other DIP Switch Settings

- For iEM-17xx Series (SW5-SW6)

	Function	On	Off
SW5	Default Direction	CW (clockwise)	CCW (counterclockwise)
SW6	Reserved	-	-

- For iEM-23xx and iEM-24xx Series (SW5-SW8)

	Function	On	Off
SW5	Default Direction	CW (clockwise)	CCW (counterclockwise)
SW6	Pulse Mode	CW\&CCW	PUL\&DIR
SW7	Smoothing Time	Enable	Disable
SW8	Activated Edge	Rising edge	Falling edge

5. Accessories

If you plan to use the Leadshine software, contact your supplier or Leadshine to purchase the RS232 cable with part number CABLE-PC-1 for V2.0 version motor (CABLE-PC-ICL42 for V1.0 version motor). In the case of using USB to RS232 conversion, contact your supplier or Leadshine for such a cable with part number USB2.0-232 which has been verified working fine.

CABLE-PC-1 (RS232 tuning cable)

USB2.0-232
(USB to RS232 Conversion Cable)

6. Warranty

Twelve Month Warranty

Leadshine Technology Co., Ltd. warrants its products against defects in materials and workmanship for a period of 12 months from shipment out of factory. During the warranty period, Leadshine will either, at its option, repair or replace products which proved to be defective.

Exclusions

The above warranty does not extend to any product damaged by reasons of improper or inadequate handlings by customer, improper or inadequate customer wirings, unauthorized modification or misuse, or operation beyond the electrical specifications of the product and/or operation beyond environmental specifications for the product.
Obtaining Warranty Service
To obtain warranty service, please contact your seller to obtain a returned material authorization number (RMA) before returning product for service.

Shipping Failed Products

If your product fail during the warranty period, please contact your seller for how and where to ship the failed product for warranty or repair services first, you can also e-mail customer service at tech@leadshine.com to obtain a returned material authorization number (RMA) before returning product for service. Please include a written description of the problem along with contact name and address.

