Novus - Produtos Eletrônicos Ltda.
Communication Protocol V1.3x
N1500 Indicator

1. SERIAL COMMUNICATION

1.1 COMMUNICATION INTERFACE

The optional serial interface RS485 allows to address up to $\mathbf{2 4 7}$ indicators in a network communicating remotely with a host computer or master controller.

RS485 Interface

- compatible line signals with RS485 standard
- 2 wire conexion from master to up to 31 slaves indicators in a multidrop bus. It is possible address 247 nodes with multiple outputs converters.
- Maximum communication distance: 1000 meters
- The RS485 signals are:
- D: Bidirectional data line.
- $\overline{\mathrm{D}}$: Bidirectional inverted data line.
- GND: Optional conexion which left communication better.

General Characteristics

- Optically isolated serial interface
- Programmable baud rate: 1200, 2400, 4800, 9600 or 19200bps.
- Data Bits: 8
- Parity: Nenhuma
- Stop Bits: 1

Communication Protocol

The MOSBUS RTU slave is implemented, available in more SCADA softwares in the market.
All configurable parameters can be accessed (readed or writed) through the Registers Table. Broadcast commands are supported as well (address 0).
The available Modbus commands are:

03 - Read Holding Register

05 - Force Single Coil (Force Digital Output state)
06 - Preset Single Register
The registers are arranged in a table in such a way that several registers can be read in the same request.

1.2 CONFIGURATION OF SERIAL COMMUNICATION PARAMETERS

Two parameters must be configured in the device for serial communication:
bRud: Baud rate. All devices with same baud rate.
RdrE5: Device communication address. Each device must have an exclusive address.

Holding Registers

Equivalent to the registers referência $4 X X X X$.

The holding registers are basically a list of the internal indicator parameters. All registers above address 12 can be writed and readed. The registers up to this address in more are read only. Please verify each case. Each table parameter is a 16 bits two complement signed word.

Holding Registers	Parameter	Descrição do Registrador
0000	PV	Read: Process variable. Write: not allowed. Range: the minimum value is in inLoi seted and the maximum value is in inH iL seted and the decimal point position depends of dPPo5.
0001	PV min	Read: Minimum value of PV Write: not allowed.
0002	PV max	Read: Maximum value of PV Write: not allowed.
0003	-	Reserved
0004	Valor Tela	Read: Current display value. Write: Current display value. Range: -1999 to 9999. The range depends of the showed display.

0005	Display Number	Read: Current display Number. Write: not allowed. Range: 0000h to 060Ch Display number format: XXYYh, when: $\mathrm{XX} \rightarrow$ number of display cycle YY \rightarrow number of display (see display fluxogram).
0006	Status Word 1	Read: Digital Inputs and Alarms (high part) and Hardware type (low part). Write: not allowed. Range: 0000h to FFFFh Value format: XXYYh, when: XX: Hardware type $0 \rightarrow$ without optionals; $1 \rightarrow$ alarms 3 and 4 optionals; $2 \rightarrow$ digital input optional. YY: digital inputs and alarms states bit 0 - Alarme 1 state: $0 \rightarrow$ inactive; $1 \rightarrow$ active bit 1 - Alarme 2 state: $0 \rightarrow$ inactive; $1 \rightarrow$ active bit 2 - Alarme 3 state: $0 \rightarrow$ inactive; $1 \rightarrow$ active bit 3 - Alarme 4 state: $0 \rightarrow$ inactive; $1 \rightarrow$ active bit 4 - Digital Input: $0 \rightarrow$ inactive; $1 \rightarrow$ active bit 5 - reserved bit 6 - reserved bit 7 - reserved
0007	Software Version	Read: Software version. Write: not allowed. Readed values: If the version is V 1.00 , for example, will be read 100 .
0008	ID	Read: Identification device Number. Write: not allowed. Readed values: $1 \text { - N1100/N2000; } 3 \text { - N1500. }$ Other values: special devices.
0009	Status Word 2	Read: Indicator status bits. Write: not allowed. Readed value: verify each bit: bit 0 - reserved bit 1 - reserved bit 2 - reserved bit 3 - reserved bit 4 - reserved bit 5 - Alarm 1 power-up inhibit (0-no; 1-yes) bit 6 - Alarm 2 power-up inhibit (0-no; 1- yes) bit 7 - Alarm 3 power-up inhibit (0-no; 1- yes) bit 8 - Alarm 4 power-up inhibit (0-no; 1-yes) bit $9-$ Unit ($0-{ }^{\circ} \mathrm{C}$; $1-{ }^{\circ} \mathrm{F}$) bit 10 - reserved bit 11 - Output 1 state bit 12 - Output 2 state bit 13 - Output 3 state bit 14 - Output 4 state bit 15 - Output 5 state
0010	Special Command	Special function command. Write: Value 0 - Tare reset; Value 5 - Hold and Peak-hold clean; Value 10 - Maximum and minimum clean.
0011	dPPo5	Decimal point position of PV. Range: 0 to 3 $0 \rightarrow X . X X X ; 1 \rightarrow X X . X X ; 2 \rightarrow X X X . X ; 3 \rightarrow X X X X$
0012	FFunc	```F key Function. Range: 0 to 5 0->oFF; 1 HHoLd; 2->RL_oFF; 3 +rE5Ek; 4 PPHoLd; 5 tRrE```
0013	ditin	```Digital Input Function. Range: 0 to 5 0->oFF; 1 HHoLd; 2->RLoFF; 3->rE5EE; 4 PPHoLd; 5 } tRrE```
0014	F Mter	Input digital filter. Range: 0 to 20. Defalut value: 4
0015	-F5Et	Input Offset value. Range: from iniol to inh il
0016	SLRLE	Indication Scale factor. Range: 0 to 1 $0 \rightarrow$ scalex1; 1 \rightarrow scalex10
0017	Sroot	Input Square Root. Range: 0 to 1 $0 \rightarrow \text { no; } 1 \rightarrow \text { yes }$
0018	-	Reserved

0019	RLreF	Alarme Reference. Range: from iniol to inh it
0020	-utty	Retransmision type of PV. Range: 0 to 1 $0 \rightarrow 4$ a 20 mA retransmision; $1 \rightarrow 0$ a 20 mA retransmision
0021	5PRL 1 Or dFRL 1	Alarm 1 Preset. Range: the minimum value is in intol seted for not differential alarm or (iniol - inH it) for differential alarm; The maximum value is in int it seted for not differential alarm or (inH it - inLoL) if differential alarm.
0022	5PRLZ Or dFRLE	Alarm 2 Preset Range: same as 5PRL 1 or dFRL i.
0023	5PRL 3 Or dFRL 3	Alarme 3 Preset Range: same as 5PRL 1 or dFRL i.
0024	5PRL4 or dFRL 4	Alarme 4 Preset Range: same as 5PRL 1 or dFRL .
0025	FuPl 1	Alarm 1 Function. Range: 0 to 6 $0 \rightarrow o$ FF; $1 \rightarrow$ IErr; $2 \rightarrow$ Lo; $3 \rightarrow H$; $4 \rightarrow d$ IFL; $5 \rightarrow d$ IFH; $6 \rightarrow d$ IF.
0026	Fufle	Alarm 2 Function Range: same as Fufil i.
0027	FuRL	Alarm 3 Function Range: same as FuRiL $:$.
0028	FuFt 4	Alarm 4 Function Range: same as Fufil 1.
0029	bLRL 1	Alarm 1 power-up inhibit. Range: 0 a 1 $0 \rightarrow$ não; $1 \rightarrow$ sim.
0030	bLRLE	Alarm 2 power-up inhibit Range: same as bLill 1 .
0031	bLRL 3	Alarm 3 power-up inhibit Range: same as bLRL 1 .
0032	bLRL4	Alarm 4 power-up inhibit Range: same as bLRiL
0033	HSTL 1	Alarm 1 Hysteresis (engineering unit) Range: 0 to span do sensor
0034	HURLL	Alarm 2 Hysteresis (engineering unit) Range: same as HURL :
0035	HURL 3	Alarm 3 Hysteresis (engineering unit) Range: same as HURL I.
0036	HSRL 4	Alarm 4 Hysteresis (engineering unit) Range: same as HYRL i.
0037	intyp	Input sensor type Range: 0 to 22. $0 \rightarrow$ tc J; $1 \rightarrow$ tc K; $2 \rightarrow$ tc T; $3 \rightarrow$ tc E; $4 \rightarrow$ tc N; $5 \rightarrow$ tc R; 6 \rightarrow tc S; $7 \rightarrow$ tc B; $8 \rightarrow \mathrm{Pt} 100$ (degree decimal); $\quad 9 \rightarrow$ Pt100(degree unit); $10 \rightarrow$ Lin J; $11 \rightarrow$ Lin K; $12 \rightarrow$ Lin T; $13 \rightarrow$ Lin E; $14 \rightarrow$ Lin N; $15 \rightarrow$ Lin R; $16 \rightarrow$ Lin S; $17 \rightarrow$ Lin B; $18 \rightarrow$ Lin Pt100 degree decimal; $19 \rightarrow$ Lin Pt100; $20 \rightarrow 0$ - $50 \mathrm{mV} ; 21 \rightarrow 4-20 \mathrm{~mA} ; 22 \rightarrow 0-5 \mathrm{~V}$
0038	unt	Temperature Unit. Range: 0 to 1 $0 \rightarrow{ }^{\circ} \mathrm{C} ; 1 \rightarrow{ }^{\circ} \mathrm{F} .$
0039	iniol	Indication Low limit. Range: the minimum value depends of input type configured in intsp and the maximum is in init it seted.
0040	inh il	Indication High limit. Range: from incol to the input maximum configured in int 4 P.
0041	RdrE5	Slave address Range: 1 to 247
0042	bRud	Communication Baud Rate. Range: 0 to 4 $0 \rightarrow 1200 ; 1 \rightarrow 2400 ; 2 \rightarrow 4800 ; 3 \rightarrow 9600 ; 4 \rightarrow 19200$
0043	Serial Number High	Serial Number (High Display) Range: 0 to 9999. Read only
0044	Serial Number Low	Serial Numbe (Low Display) Range: 0 to 9999. Read only
0045	Key	Remote action of pressed key. Range: 0 to 9 $1 \rightarrow \square ; 2 \rightarrow \underline{\underline{\Delta}} ; 4 \rightarrow \sqrt{\nabla} ; 8 \rightarrow \sqrt{\text { Back }} ; 9 \rightarrow \sqrt{\text { Back }} \text { and } O .$
0046	RL 41	Alarm 1 Time 1 of timer. Range: 0 to 6500 sec See operation manual for details.

0047	RL 42	Alarm 1 Time 2 of timer (in seconds) Range: same as RL it i.
0048	RLIL 1	Alarm 2 Time 1 of timer (in seconds) Range: same as RiL t.
0049	RLIL2	Alarm 2 Time 2 of timer (in seconds) Range: same as RLIt
0050	RLI 3	Alarm 3 Time 1 of timer (in seconds) Range: same as RL it
0051	RLI 32	Alarm 3 Time 2 of timer (in seconds) Range: same as RLL it
0052	RL奴 1	Alarm 4 Time 1 of timer (in seconds) Range: same as RLit
0053	RLL 42	Alarm 4 Time 2 of timer (in seconds) Range: same as RLIt i.
	-	Reserved
	-	Reserved.
0061	inP.LI	Custom linearization first value.
0062	inP.02	Custom linearization point \#02
0063	inP.03	Custom linearization point \#03
0064	inP.04	Custom linearization point \#04
0065	inP.05	Custom linearization point \#05
0066	inP.06	Custom linearization point \#06
0067	inP. 07	Custom linearization point \#07
0068	inP. 08	Custom linearization point \#08
0069	inP. 09	Custom linearization point \#09
0070	inl 15	Custom linearization point \#10
0071	inli i 1	Custom linearization point \#11
0072	inP. ic	Custom linearization point \#12
0073	inP. 13	Custom linearization point \#13
0074	inip. 14	Custom linearization point \#14
0075	inip. 15	Custom linearization point \#15
0076	inP. 15	Custom linearization point \#16
0077	inP. 17	Custom linearization point \#17
0078	inl 18	Custom linearization point \#18
0079	inl 19	Custom linearization point \#19
0080	inP.ET	Custom linearization point \#20
0081	-ut. 1	Value to be displayed in point \#01 of custom linearization (in engineering units)
0082	-ut.ã	Value to be displayed in point \#02 of custom linearization
0083	-ut.133	Value to be displayed in point \#03 of custom linearization
0084	out. 14	Value to be displayed in point \#04 of custom linearization
0085	out. 55	Value to be displayed in point \#05 of custom linearization
0086	out. 16	Value to be displayed in point \#06 of custom linearization
0087	out. 17	Value to be displayed in point \#07 of custom linearization
0088	out.08	Value to be displayed in point \#08 of custom linearization
0089	-ut. 19	Value to be displayed in point \#09 of custom linearization
0090	-ut. in	Value to be displayed in point \#10 of custom linearization
0091	-ut. 11	Value to be displayed in point \#11 of custom linearization
0092	out. i2	Value to be displayed in point \#12 of custom linearization
0093	वut. 13	Value to be displayed in point \#13 of custom linearization
0094	out. 14	Value to be displayed in point \#14 of custom linearization
0095	qut. 15	Value to be displayed in point \#15 of custom linearization
0096	out. 15	Value to be displayed in point \#16 of custom linearization
0097	out. 17	Value to be displayed in point \#17 of custom linearization
0098	out. 18	Value to be displayed in point \#18 of custom linearization
0099	-ut. 19	Value to be displayed in point \#19 of custom linearization
0100	-ut.2]	Value to be displayed in point \#20 of custom linearization

Digital Output States

Equivalent to Coil Status (reference OXXXX). The digital output states are basically the Boolean status of the respective digital outputs. The Read allows the actual
state of digital outputs, regardless of their function.
Writing to an output bit is only possible if the output has no function assigned to it (the output is configured to "OFF" in alarm cycle)

Coil Status	Output Description
1	Alarm 1 Output status
2	Alarm 2 Output status
3	Alarm 3 Output status
4	Alarm 4 Output status

Exceptions - Error conditions

The Modbus RTU protocol checks the CRC in the data blocks received.
Reception errors are detected by the CRC, causing the indicator to discard the packet, not sending any reply to the master. After receiving an error-free packet, the indicator processes the packet and verifies whether the request is valid or not, sending back an exception error code in case of an invalid request.

If a write command sends a out-of-range value to a parameter, the indicator clamp the value to the parameter range limits, replying with a value which reflects these limits (maximum or minimum value allowed for the parameter).
Broadcast read commands are ignored by the indicator; only broadcast write commands are processed.

Error Code	Error Description
81 h	Invalid command
82 h	Invalid register number or out of range
83 h	Invalid register quantity or out of range

