

PRODUCTION EXECUTION STANDARD REFERENCE

- Quality management system certification: GB/T19001-2016 idt ISO19001:2015 standard (Certificate No.: 128101)
- Quality management system certification: IATF16949: 2016 (Certificate No.: T178487)
- GJB9001C-2017 Standard Weaponry Quality Management System Certification (Registration number: 02622J31799R0M)
- Intellectual property management system certification: GB/T29490-2013 standard (Certificate No.: 41922IP00281-06R0M)
- High-tech Enterprise (Certificate No.: GR201844204379)
- ShenZhen Professional Dedicated Unique Innovative Enterprice(No.: SZ20210879)
- Revision time:2023-3-8

Note: Product functions, parameters, appearance, etc. will be adjusted as the technology upgrades. Please contact our pre-sales business to confirm when purchasing.

GENERAL DESCRIPTION

HCM508B is a high-precision 3D compass independently developed by Rion Technology Co., Ltd. it is integrated with digital signal RS232 output and analog 4~20mA output. IP67 waterproof rating, more suitable for drilling measurement. It uses hard iron and soft iron calibration algorithms, so that any tool surface with a roll angle of 360° can still provide high-precision heading information. It has the characteristics of small size and low power consumption, suitable for miniaturized sensitive measurement systems.
HCM508B integrates three-axis magnetic sensing technology, calculates heading data in real time through the central processing unit, and uses a three-axis accelerometer to compensate for a wide range of tilt angles. It is a high-performance and high-stability product. HCM508B is small, low power consumption and is widely used in many fields such as antenna stability, vehicles, and system integration.

- FEATURES

\star Heading accuracy: $0.3^{\circ} \sim 0.5^{\circ} \quad \star$ Roll angle measuring range $: \pm 180^{\circ}$
\star Tilt angle resolution: 0.1°

* Wide Temperature : $-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
\star Tilt angle accuracy: 0.2°
* Standard RS232/RS485/TTL output interface
\star Size: L125×W22×H24 mm
\star Analog 4-20mA output
\star With hard magnetic ,soft magnetic and angle compensation

- APPLICATION

OINCLINOMETER o3D COMPASS oACCELEROMETER oGYRO oNORTHFINDER oINS\&IMU

HCM508B HIGH ACCURACY 3D DIGITAL COMPASS

PERFORMANCE
HCA508B
PARAMETER

Compass heading parameter	The best heading accuracy	$0.3{ }^{\circ}$
	Resolution	0.1°
Compass tilt parameter	Pitch accuracy	$0.1^{\circ}<15^{\circ}$ (Measure range)
		$0.1^{\circ}<30^{\circ}$ (Measure range)
		$0.1^{\circ}<60^{\circ}$ (Measure range)
		$0.2^{\circ}<85^{\circ}$ (Measure range)
	Pitch tilt range	$\pm 85^{\circ}$
	Roll accuracy	$0.1^{\circ}<15^{\circ}$ (Measure range)
		$0.1^{\circ}<30^{\circ}$ (Measure range)
		$0.1^{\circ}<60^{\circ}$ (Measure range)
		$0.2^{\circ}<180^{\circ}$ (Measure range)
	Roll tilt range	$\pm 180^{\circ}$
	Resolution	0.1°
Calibration	Hard iron calibration	Yes
	Soft iron calibration	Yes
	Magnetic field interference calibration method	24 points(3D calibration)
Physical features	Dimension	L125*W22*H24mm
	Weight	90 g
	RS232/RS485/TTL interface connector	5PIN connector
Interface features	Start delay	<50MS
	Maximum output rate	$20 \mathrm{~Hz} / \mathrm{s}$
	Communication rate	2400 to19200baud
	Output format	Binary high performance protocol
Analog output	4-20mA FS(0-360deg)	Only for heading 4-20mA output
Power	Power supply	Default DC 12 V ; 18~36v optional
	Current(Maximum)	40 mA
	Ideal mode	28 mA
	Sleep Mode	TBD
Enviroment	Operating range	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
	Storage temperature	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
	Resistance shock performance	2500 g
Electromagnetic compatibility	According to EN61000 and GBT17626	
MTBF	≥ 98000 hours/times	
Insulation resistance	$\geq 100 \mathrm{M}$	
Shock resistance	100g@11ms, 3 Axial Direction (Half Sinusoid)	
Anti-vibration	10grms, 10~1000Hz	

- ORDERING INFORMATION

E.g: HCM508B-232: Standara shell sealed / Horizontal installation / RS232 output.

ELECTRICAL CONNECTION

T10	RED	WHITE	GREEN	BLACK	GRAY
	DC12V Power supply positive	$\begin{gathered} \text { TTL(RXD) } \\ \text { RS232(RXD) } \\ \text { RS485(D+) } \end{gathered}$	$\begin{gathered} \text { TTL(TXD) } \\ \text { RS232(TXD) } \\ \text { RS485(D-) } \end{gathered}$	GND Power Negative	CURRENT OUTPUT

RS485 Cable Connection Definition

RS232Cable Connection Definition

SIZE

HCM508B MEASURING DIRECTIONS\&FIX

The HCM508B 3D electronic compass azimuth is using geomagnetic principle, so it is very important to select a minimum magnetic interference environment for installation positon. Please place and install the HCM508B away from the iron, magnets, engines and other magnetic objects as much possible as you can. Need control over 30CM distance(different magnetic interfere with the compass in different distance) at least even there are these magnetic medium around. In order to ensure optimal measurement environment please must use the $\mathbf{M 4}$ anti-interference screws for installation.
Although HCM508B can compensate the moderate deviation in the stable magnetic environment, but it can not compensate the changed magnetic interference. Please pay much attention to the wire with DC will generates a magnetic field, because if the DC change then the magnetic field will also change in size . The battery also is another interference source of changing . Each installation is different, and the user must evaluate the feasibility of installation under all possible operating environment.

The optimal heading accuracy of HCM508B can reach $0.3^{\circ} \sim 0.5^{\circ}$, this undergo a rigorous validation indisputable, the most scientific test method is equally crucial. The test method we recommend is: Please install the HCM508B electronic compass to a vertical and erect aluminum pole (non-magnetic material), then proceed with heading accuracy measurement (of course the rotating rod perpendicular to the rotating platform, as much as possible to avoid large external magnetic field interference). Doing so can reduce the compass turning radius, to scientifically improve the measurement accuracy. This is just to provide the installation of the laboratory, must be flexible to deal with the specific situation.E.g: is mounted in the car, HCM508B should do its installation in the perpendicular to the movement direction.

HCM508B HIGH ACCURACY 3D DIGITAL COMPASS

HCM508B CALIBRATION METHODS

Calibration lemmas:

1) The accuracy of testing compass can not reach the requirements;
2) compass installation environment have magnetic interference, the interference is fixed, and the interference magnetic field and compass installation will not happen again in distance changes (example: compass to be installed above an iron material, because the iron will have magnetic interference, at this time then need to rotate and calibrate the iron and compass, and the iron and compass will not be separated when using, once they are separated then need to recalibrate. If the iron size is not fixed, or with a compass distance change is not fixed, the interference can not be calibrated, only can install it in a very far away, safe distance control in above 30 cm).
3) Correctly connect the HCM compass to the RS232 communication port, turn on the power.
2)Send the calibration start command: $680400080 C$ in hexadecimal format. (Or click the Rion's 3D debugging software "CALI-START" button)
4) HCM compass will return the response command, at the same time the compass take each point will return a response, please refer to the communication protocol.
5) With the following rotation rules after minimum taking the 12 calibration points, then send the stop
calibration command: $68 \mathbf{0 4 0 0} 09$ OD (or click the RION 3D debugging software "CALI-STOP" button) , the compass will pause about 2 seconds, the internal CPU automatically calculate just sampling data, after the calculation will return a set of data, is the percentage value of the data just gain. 5)Then send the save calibration command: 680400 OA OE "(or click RION 3D debugging software" CALI-SAVE "Save button), the compass will return the answer reply command, you can work properly if successfully saved, if return unsuccessful information, the user can repeat the above calibration steps also can return to the compass factory default calibration data work.
6) Following 2) Send a calibration start command to begin calibration, keep the stability of the module posture, waiting for the first point is sampled.
7) after the first point sampling, rotate module around 90 degrees horizontally,to keep the module stability, wait for the next point is sampled. (Refer to the below diagram calibration steps)
8) Repeat the above steps until the sample to 24 points, and then send the calibration stop button.
9) Send calibration save command to end the calibration.

When the user calibrate, if the distance from the magnetic interference source with the compass occur change, the percentage of the calibration will be lower, the precision will be poorer.

Note: When you start the calibration and take points, move the compass to the following location, please note that these points are not absolute heading orientation, but with reference to the first point sampling heading orientation relative orientation change value. That is, you do not need to know which position the real North Pole is in.Further for example, the 90degree rotation and 15 degrees pitch only one reference value, to allow a certain sampling angle value error, unnecessarily strictly require very precise. Take at least below12 points calibration, it is recommended that 24 points, the user can sample more points in order to improve the accuracy, up to 50 points at most, the same sampling principle with the following methods, just a sampling of the pitch angle and roll angle point will increase.

The calibration steps are as follows:

The starting point of the calibration can be in any place of 360°, as long as it keeps the about 90° for every angle change (not too precise). Example Pic.A: Starting point $\mathrm{H}=\mathbf{0}^{\circ}, \mathrm{R}=0^{\circ}, \mathrm{P}=+15^{\circ}$ (first adjust the pitch value P) Please keep this position for 2 to 3 seconds, and the system will take the first point. After taking the first point, rotate it 90° horizontally and keep this position for 2 to 3 seconds, and the system will take the second point. After taking the second point, rotate it 90° horizontally and keep this posture for 2 to 3 , and the system will take the third point. After taking the 4th point, rotate it horizontally by 90° again, and keep this posture for 2 to 3 , and the system will take the 4th point.

After took the fourth point, keep no change for H and R, and increase $+P$ angle value.

Refer to the left Pic.B: starting point $H=0^{\circ} R=0^{\circ} P=$ $+55^{\circ}$, please keep this posture for 2-3 seconds, the system will take the fifth point.

After took the fifth point, again rotate 90° horizontally, please keep this posture for 2 to 3 seconds, the system will take the sixth point. .

After took the sixth point, again rotate 90° horizontally, please keep this posture for $\mathbf{2}$ to $\mathbf{3}$ seconds, the system will take the seventh point. .

After took the seventh point, again rotate 90° horizontally, please keep this posture for $\mathbf{2}$ to $\mathbf{3}$ seconds, the system will take the eighth point.t.

After took the eighth point, keep no change for H and R , then calibrate - P angle.

Refer to the left Pic.C: starting point $\mathrm{H}=\mathbf{0}^{\circ}, \mathrm{R}=\mathbf{0}^{\circ}, \mathrm{P}=-$ 15°,please keep this posture for 2-3 seconds, the system will take the ninth point.

After took the ninth point, again rotate 90° horizontally, please keep this posture for 2 to $\mathbf{3}$ seconds, the system will take the tenth point.
After took the tenth point, again rotate 90° horizontally, please keep this posture for 2 to 3 seconds, the system
will take the eleventh point.
After took the eleventh point, again rotate 90° horizontally, please keep this posture for $\mathbf{2}$ to $\mathbf{3}$ seconds, the system will take the twelfth point.

After took the twelfth point, keep no change for H and R, then increase - P angle value.

Refer to the left Pic.D: starting point $\mathrm{H}=\mathbf{0}^{\circ}, \mathrm{R}=\mathbf{0}^{\circ}, \mathrm{P}=-$ 55°,please keep this posture for 2-3 seconds, the system will take the thirteenth point.
After took the thirteenth point, again rotate 90° horizontally, please keep this posture for 2 to 3 seconds, the system will take fourteenth point. After took the fourteenth point, again rotate 90° horizontally, please keep this posture for 2 to $\mathbf{3}$ seconds, the system will take the fifteenth point. .

After took the fifteenth point, again rotate 90°
horizontally, please keep this posture for $\mathbf{2}$ to $\mathbf{3}$ seconds, the system will take the sixteenth point. .

After took the sixteenth point then finished P calibration, then calibrate $R(R o l l ~ v a l u e) c a n$ calibrate alternately .
Refer to the left Pic.E: starting point $\mathrm{H}=0^{\circ}, \mathrm{R}=+15^{\circ}, \mathrm{P}=0^{\circ}$, please keep this posture for 2-3
seconds don't move, the system will take the seventeenth

point.
After took the seventeenth point, again rotate 90° horizontally, alternate the negative Roll value $\mathrm{R}=-15^{\circ}$, please keep this posture for 2 to 3 seconds, the system will take the eighteenth point.
After took the eighteenth point, again rotate 9° horizontally, alternate the positive Roll value
$\mathbf{R}=+15$, please keep this posture for 2 to $\mathbf{3}$ seconds, the system will take the nineteenth point.
After took the nineteenth point, again rotate 90° horizontally, alternate the negative Roll value $R=-15$, please keep this posture for 2 to $\mathbf{3}$ seconds, the system will take the twentieth point.

successfully.

After took the twenty second point, again rotate 90° horizontally, alternate the positive Roll value $\mathbf{R}=+55$, please keep this posture for 2 to 3 seconds, the system will take the twenty third point.
After took the twenty third point, again rotate 90° horizontally, alternate the negative Roll value $R=-55$, please keep this posture for 2 to $\mathbf{3}$ seconds, the system will take the twenty fourth point.
Sending stop command---compass response---Resending save command---compass response save

PRODUCT PROTOCOL

1.DATA FRAME FORMAT: (8 bits date, 1 bit stop, No check, Default baud rate 9600)

Identifier (1byte)	Date Length (1byte)	Address code (1byte)	Command word(1byte)	Date domain	Check sum (1byte)
$\mathbf{6 8}$					

Identifier: Fixed68H
Data length: From data length to check sum (including check sum) length
Address code: Accumulating module address, Default :00
Date domain will be changed according to the content and length of command word
Check sum: Data length, Address code, Command word and data domain sum,No carry.
2.COMMAND word analysis

Desc.	Meaning/Example	Description
0×04	Meanwhile read Pitch, Roll, Heading Angle command 6804000408	Data domain (Obyte) No Data domain command
0×84	Sensor answer reply E.g:68 OD 00840010501010 05010401 1C	Data domain (9byte) AA AB BB CC CD DD EE EF FF AA AB BB:3 RED Characters is Pitch Axis CC CD DD:3 BULE Characters is Roll Axis EE EF FF: 3 GREEN Characters is Heading Angle format with same analytic method as Pitch, Roll, Heading On the left example, the angle is : Pitch: $+010.50^{\circ}$, Roll: -010.05°, Heading $+104.01^{\circ}$ AA AA BB is the return angle value of Pitch, which is the compressed BCD code, 001050 the red threebyte is the Pitch return angle valu e , which is the compressed BCD code. The high bit 0 of t he first byte is the sign bit (0 is positive, 1 is negative) 01 0 is a three-digit integer value, and 50 is a twodigit decimal value. The analysis method of other axis da ta is the same, the pich angle is analyzed as $+10.50^{\circ}$ 101005 The blue threebyte is the return value of Roll, a nd the parsing method is the same as Pitch, The roll angl e is analyzed as -010.05° 010401 the green threebyte is heading return value, th e parsing method is the same as Pitch, and Heading ang le is parsed as $+104.01^{\circ}$
0×06	Setting declination command 68060006020816	Data domain (2byte) SAAB S is symbol 0 positive 1 negative AA: two digits integer, B: a decimals E.g: 0208 is +20.8 deg
0×86	Sensor answer reply E.g: 6808008600 8E	Data domain (1byte) Data domain in the number means the sensor response result 00 Setting successfully FF Setting failure
0×07	Read declination command $680400070 b$	Data domain (Obyte) No Data domain command
0×87	Sensor answer reply E.g: 68060087020897	Data do (2byte) Data domain in the number means the sensor response result
0×08	Start calibration command 68040008 OC	Data domain (Obyte) No Data domain command
0×88	Sensor answer reply E.g: 6805008800 8D	Data domain (1byte) Data domain in the number means the sensor response result 00 Start success FF Start failure
Note: In future the module to take each point then return one data, until stop calibration, the format as following:		
0×88	Sensor reply calibration taking points number E.g: 680500880794	Data domain (1byte) Data domain in the number means the sensor took the calibration points number

0×09	Stop calibration command 68040009 OD	Data domain (Obyte) No data domain
0×89	Sensor answer reply E.g: 6808008900998070 1A	Data domain (4byte) AA XX YY ZZ Note: AA is wrong code, 00 Correct, FF Error $X X \quad X$ axis percentage $Y Y \quad Y$ axis percentage Z axis percentage
OXOA	Save calibration command $680400 \text { OA OE }$	Data domain (Obyte) No data domain
0X8A	Sensor answer reply command E.g: 680500 8A 00 8F	Data domain (1byte) Data domain in the number means the sensor response result 00 Success FF Failure
OXOB	Setting communication baud rate command 680500 OB 0212	Data domain (1byte) Baud rate: default :9600 00 means 2400 01 means 4800 02 means 9600 03 means 19200
0X8B	Sensor answer reply command E.g: 680500 8B 0090	Data domain (1byte) Data domain in the number means the sensor response result 00 Success FF Failure
OXOF	Setting module address command 680500 OF 0115	Data domain (1byte) XX module address, address from 00 to EF range Note: Our products have a unified address: FF, If forgot the set address when operating, can use the FF address to operate the product, still normal response.
0X8F	Sensor answer reply command E.g: 680500 8F 94	Data domain (1byte) Data domain in the number means the sensor response result 00 Success FF Failure
OXOC	Setting angle output mode 6805000 C 0011	Data domain (1byte) Default : answer reply mode 00: answer reply mode 01: Auto output mode
0X8C	Sensor answer reply command E.g:68 05008 CO 01	Data domain (1byte), Data domain in the number means the sensor response result 00 Success FF Failure
0X2A	Setting angle output mode 680500 2A 00 2F	Data domain (1byte) 00: Horizontal mounting measurement 01: Vertical mounting measurement (the connector down) Default : Horizontal mounting measurement
Horizontal mounting mode: mounting the compass horizontally, the roll and pitch angle output 0 Vertical mounting mode: mounting the compass vertically, the roll and pitch angle output 0		
OXAA	Sensor answer reply command E.g:68 0500 AA 00 AF	Data domain (1byte) Data domain in the number means the sensor response result 00 Success FF Failure
0×41	Query mounting mode command 6804004145	Data domain (Obyte)
0XC1	Sensor answer reply command E.g:68 0500 C1 00 C6	Data domain (1byte) Data domain in the number means the sensor response result 00 :Horizontal mounting mode 01:Vertical mounting mode
0×42	Query output mode command 6804004246	Data domain (Obyte)
0XC2	Sensor answer reply command E.g:68 0500 C2 00 C7	Data domain (1byte) Data domain in the number means the sensor response result 00 Answer reply mode 01 Auto output mode
OINCLINOMETER O3D COMPASS OACCELEROMETER OGYRO ONORTHFINDER OINS\&IMU		

Add: Block 1 \& Block 6, COFCO(FUAN) Robotics Industrial Park , Da Yang Road No. 90, Fuyong Distict, Shenzhen City, China Tel: (86) 755-29657137 (86) 755-29761269

Fax: (86) 755-29123494
E-mail: sales@rion-tech.net
Web: www.rionsystem.com

